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Adsorption Isotherms for Fluids with Strong 
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We derive adsorption isotherms for an adsorbate of hard-sphere particles 
with "st icky" interactions at any fluid density being adsorbed onto a plane, 
"st icky" surface. The theory is based on the Percus-Yevick theory for 
bulk fluids and explicitly includes the equilibrium between the adsorbed 
fluid and the bulk adsorbate. The theory predicts a surface condensation at 
low temperatures and low bulk densities in good agreement with surface 
condensations found in experimental studies of adsorption of gases onto 
graphite. An approximate law of corresponding states for these transitions 
is developed. At higher bulk densities and room temperatures, the adsorp- 
tion isotherms can show a maximum, in accord with recent experimental 
work. 

KEY WORDS: Surface phase transitions; adsorption isotherms; dense 
fluids. 

1. I N T R O D U C T I O N  

Recent ly  we have developed a me thod  for  descr ibing the microscopic  s t ructure  
o f  a dense fluid or  dense fluid mixture  (like a solut ion)  in the vicinity o f  a p lane  
adso rb ing  surface. <l-a> In  the  theory  o f  bu lk  s imple l iquids i t  is known  tha t  
the  most  i m p o r t a n t  fea ture  o f  the in terpar t ic le  potent ia l  for  de termining  
the microscopic  s t ructure  o f  the  l iquid is the repulsive core. (~> Fur ther ,  the  
repuls ive core may  be replaced by  a hard-sphere  poten t ia l  o f  app rop r i a t e  
d iamete r  wi thout  changing  the s t ructure  o f  the l iquid.  <s~ In this pape r  we 
assume tha t  the  same pr inciple  holds  true for  adso rp t ion  phenomena .  Tha t  

Supported by the Australian Research Grants Commission. 
1 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, 

Canada. 
2 Department of Mathematics, University of Odense, Odense, Denmark. 
3 Permanent address: Department of Mathematics, University of Melbourne, Parkville, 

Victoria, Australia. 

47 

This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum Publishing Corporation, 
227 West 17th Street, New York, N.Y, 10011. 



48 E.R. Smith and J. W. Perram 

is, the repulsive core of the interparticle potential is the main determinant of  
the adsorbate structure and a model system with an appropriate hard-sphere 
potential will give an accurate description of that structure. 

To describe the adsorption of a mixture of M species of hard spheres (with 
densities p. and diameters R~, a = 1 ..... M) onto a plane surface, we first 
consider a bulk system of M + 1 different species. In this bulk system we 
write the probability for finding a particle of species a within d3rl of rl and 
a particle of species/3 within dar2 of r2 as 

n.,B(rl, r2) dSrI d3r2 

For an infinite system in which all potentials are spherically" symmetric, the 
function n~a depends only on jr1 - r2I. We now introduce the correlation 
functions g and h by the definitions 

fir n~B(]rl) d3r = 4~rr2p~PBg"B(r) dr = 4~rr2p~pB[h~(r) + 1] dr (1) 
f=r 

The function g~a has the properties 

lim g~a(r) = 1 
T-ooo 

and 
g~a(r) = 1 for all r for the ideal gas 

Thus h~B is a measure of  the departure of  a system from ideality. We now 
consider the environment Of an M + 1 species particle. We calculate the 
density of ~ species particles at a distance r from the surface of  closest 
approach of an a particle to an M + 1 particle. This density is 

p~[hM+I,,,(RM+I,. + r) + 1] 

where we define R~.~ = (R~ + Re)~2. If  we multiply this by the surface area 
of a sphere of radius RM+I,~ + r and divide by the area of the (M + l, a) 
sphere of closest approach, we find the number of a particles at distance r 
from the (M + 1, a) sphere surface per unit area of (M + 1, a) sphere 
surface, and write this quantity 

d.*(r) = 4rr(R~+~.~ + r)2p.[hM+~..(r) + 1]/4zrR~+~.~ (2) 

To study adsorption processes, we now take two limits on d~*(r). First we 
take the limit PM+Z--->0. SO that d~*(r) refers to the density of  a particles 
about an isolated M + t species particle. We then take the limit RM + 1 ~ oo 
so that the surface of the isolated M + 1 species particle becomes planar and 
d.*(r) is the density per unit area of plane surface of ~ species particles a 
distance r from the plane surface. We write this density as 

d~(r) = lim lira d.*(r) (3) 
RM+I - ~  pM +1"~0 

We note that it is essential to take the limits in the order shown. 
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To use Eqs. (2) and (3) it is necessary to have some characterization of the 
correlation functions h~ to take limits with. To do this we first define, for the 
M + 1 species mixture, the direct correlation functions C~a as the solutions 
of the Ornstein-Zernike relation (6-8) 

M + I  

h=a(r ) = c..(r) + ~ p, das co,(Isl)h~e(lr - s ] )  ( 4 )  
~'=1 

This definition introduces a second set of functions {c,a} about which we 
know little. To be able to evaluate h,a and c~a we must have a second relation 
between them. There is no known exact relation, but an approximate one 
which gives very good agreement .with simulation studies for systems with 
strong repulsive cores to the interparticle potentials (9) is the Percus-Yevick 
approximation (lo) 

c,.a(r ) = [1 - e~a(r)/kr][1 + h~(r)] (5) 

where r is the interparticle potential. In this pape r we calculate the 
correlation functions h~ a using Eqs. (4) and (5). 

Taking the limits in Eq. (3) is much easier if we can solve Eqs. (4) and 
(5) analytically. To this end we introduce the potential 

,/'[R~,/12,~,(T)] ~(r - R~  - ) ,  r < R~, 
exp[ - (1 /kT) (~B(r ) ]  = [.1, r > R,e  (6) 

with ~(x) the Dirac delta function. The parameters r ~ ( T )  are chosen so that 
the second virial coefficient for this potential is the same as that for some 
more realistic potential. The second virial coefficient is particularly easy to 
evaluate for this potential and we find 

( %~(T) = R~ B 1 + 3 r2{exp[-r - 1} dr (7) 

where 4,*~(r) is some realistic interparticle potential. In this paper we use a 
Lennard-Jones potential throughout. The solution of the Percus-Yevick 
approximation for the sticky sphere mixture system has been calculated 
recently (11,12) and we use that solution. We note that several other workers 
have subsequently used the double limit procedure outlined above to study 
adsorption with other adsorption potentials, aa-15) 

In Ref. 3 we developed this adsorption theory for adsorbates with only 
hard-sphere interactions between the adsorbate particles and a sticky 
adsorption potential. The structure of dense fluid adsorbates against a plane 
adsorbing surface shows large density oscillations as a function of distance 
from the surface. The wavelength of the oscillations for a one-component 
adsorbate is the particle diameter. Outside the first monolayer, the structure 
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of a strongly adsorbed dilute solute in a dense solvent is almost entirely 
determined by the solvent structure. Unfortunately, we can find at present 
no experimental results which confirm this picture. Thus it is of some interest 
to examine the adsorption isotherms from our sticky adsorption model to 
see how well they agree with experimental adsorption isotherms. 

One set of isotherms of particular interest are those for the adsorption 
of gases onto exfoliated graphite and graphitized carbon. (16-19~ The experi- 
mental adsorbing surfaces are highly planar (20~ and the adsorbate particles 
are either spherical (krypton and xenon) or roughly spherical (methane). At 
low to intermediate monolayer coverage the isotherms show a sharp jump 
at temperatures in the range 50-100 K and at higher temperatures in this 
range they show a region of very rapid increase. Further, in the temperature 
range considered the adsorbing potential of graphite for these gases has a 
low minimum (12-15 kT) and very high curvature at the potential minimum 
(~  500 kT nm-z), so that the delta-function model for the adsorbing potential 
is not as bad as might be expected. The sharp jump in the adsorption isotherm 
is identified as a surface condensation from a dilute phase (possibly disordered 
gas) to a dense phase (possibly disordered liquid). From the point of view of 
verifying our model of adsorption from dense fluids, these transitions occur 
at unfortunately low bulk densities ('O~ = x6-~p,R~a ~ 10-s), so that agree- 
ment between our model and experiment will not help in determining the 
accuracy of the model for dense adsorbates. 

Another set of adsorption isotherms of interest are those measured by 
Ozawa et al. ~2~ for dense gases onto a molecular sieving carbon. The iso- 
therms are measured at temperatures in the range - 20~ to 60 ~ and plotted 
as a function of bulk adsorbate fugacity from zero to about 100 atm. For the 
gases argon, nitrogen, carbon dioxide, and methane, these isotherms have a 
distinct local maximum. Other workers have also reported maxima in 
adsorption isotherms at high bulk adsorbate densities. ~22,23~ The isotherms 
measure the Gibbs surface excess density, which in our model would be 

f2 n, = [d,(x) - 0r dx  (8) 

The maximum occurs because the region of space in which particles may be 
"adsorbed"  eventually fills as p, increases. When this region saturates, 
further increase of p~ means that n~ must decrease. The maximum appears 
to be a real effect of the hard-core repulsions between adsorbate particles. 
It occurs at relatively high densities for most adsorption studies ( ~  = 
0.05-0.1) and thus is of interest to us in testing our adsorption model. 

In this paper we give an outline of the solution of Eqs. (4) and (5) with 
potential (6) in Section 2. In Section 3 we develop expressions for adsorption 
isotherms using the two limits in Eq. (3). We find both the surface excess 
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[cf. Eq. (8)] and the adsorbed monolayer density. In Section 4 we apply this 
theory to the surface condensations discussed above, and find good agree- 
ment with experiment. We also develop an approximate law of corresponding 
states for adsorbed monolayer, dilute dense phase condensations. In Section 
5 we apply the theory to the adsorption isotherm maxima discussed above and 
again find agreement with experimental results. We conclude the paper with a 
short discussion section. 

2. THE STICKY ( M  + 1 ) - C O M P O N E N T  HARD-SPHERE 
MIXTURE 

We solve the Percus-Yevick approximation for this system [Eqs. (4) 
and (5)] using Baxter's Wiener-Hopf factorization technique. (~'~m After 
Fourier-transforming, the Ornstein-Zernike relation (4) may be written in 
matrix form as 

[ I -  r + / l ( k ) ]  = I (8') 

where I is the (M + 1) • (M + 1) identity matrix and/l=z and C~B are the 
Fourier transforms of (p=flr and (p,pz)l/2c=B(r). The basis of Baxter's 
method is to write 

I -  r  = Q r ( - k ) Q ( k  ) (9) 

where 

~B(k) = ~B - 27r(P~PB) lm r[R.,B dr eigrq.,~(r) (10) 
r Sct,# 

with S~. z =�89 - Re). The Percus-Yevick equation (5) enters because for the 
potential (6) we have 

c~z(r ) = 0 for r > R~z (11) 

and this has the effect of restricting q~B(r) to be nonzero only on S~,~ < r < 
R~,B. Substitution of (9) and (10) into (8') and inversion of the Fourier trans- 
form (2~.11> gives rise to 

M + i ~R~.y 

rh~z(r) = -q '~(r )  + 2g ~ p~ dtq~y(t)(r - t)hrB(]r - t D (12) 
7 = i JSg,? 

for r > S=,~. We note that if S.,a < r < R=,# and S:,a < t < R~,#, then 
S~,a < [r - tl < R=,a. For hard spheres we may write h.a(Irl) - - 1  for 
S~,o < r < R.,B and for this range of r replace h~B(r) by - 1  both on the 
left side of Eq. (12) and in the integrand of Eq. (12). This shows that q'B(r) 
is linear and q~(r)  quadratic on that range. I f  we look at the first term in the 
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graphical expansion of h~e(r ) (the o- -o  term), we see that it is sensible to 
suggest the form 

h6B(r) = - 1  + -~)%BR~,~3(r -- R ~  - )  for S~,~ < r < R~,B (13) 

where the {h6B} are a set of numbers to be determined later. Since q6B(r) = 0 
for r > R.~, Eq. (13) gives the discontinuity in q.B(r) at r = R~e, We find 

1 2 (14) q.a(r)  = �89 2 - R2.a) + b . (r  - R ~ )  + -1-2-3,.aR~a 

where 

a.  = (1 - Ca + 3R6~z)/(1 - ~a) 2 - X6/(1 - Ca) 

b~ = -3R62r - r 2 + R~,X, J2(1 - ~:a) 

M + I  M + I  

= p~A6yR6~R~ 

If  we insert (13) into (12), we can get an estimate of h~a. Similarly, using the 
Fourier inverse of Eq. (9), we can calculate the amplitude of the delta function 
in c,a(r ) at R6a. If  we insert the two calculations into the Percus-Yevick 
approximation, we obtain the set of coupled quadratic equations 

M + I  2 

7 = 1  

The solution of these equations gives the set of numbers {;~6z} and thus 
the functions q6~(r). Numerical solution of Eq. (12) then gives the functions 
h~B(r ) for r > R6z. The structure of Eq. (12) allows its solution for h6B(r) to 
proceed extremely quickly. <3'25) 

3. A D S O R P T I O N  L I M I T  OF THE S T I C K Y  M I X T U R E  

The methods necessary for taking the limits PM+Z ~ 0 and then RM+I -+ oo 
on the above solution have been discussed carefully in an earlier paper, (a) so 
we do not discuss them in great detail here. We require the surface excess 
and monolayer adsorption isotherms. From Eq. (2) the surface excess is the 
double limit (3) of 

_5 f [  n=* = p6RM+I.~ r2hM+l ,~ ( r )dr  + -~p=Rml + 1,~ (16) 

Since the integral in this equation is the Fourier transform of  hM+l,6(r) at 
zero wave vector, we find, by substituting (9) into (8'), that 

1 ( 06 ~1'2{[0(0)]-1[QT(0)]-1-  I}6,M 
n6* = -~ p~RM+I,u + + (17) 

\PM + 1/ 41rR~ + 1,~ 
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It can be seen that various parts of this expression will diverge as PM+I "-+ 0 
and then RM+~-+ 00. Extreme care must be taken to ensure that these di- 
vergenes cancel with other terms which are not so obvious in Eq. (17). The 
monolayer adsorption isotherm 

m ~ =  lim lim p,AM+~,~RM+~,dl2 (18) 
R M  + 1 "4' cO DM + 1"--~ 0 

may be calculated more simply. We use it to study phase transitions in layers 
adsorbed from dilute gases. For  the study of maxima in adsorption isotherms 
we naturally concentrate on the surface excess. From this point on we 
consider one-component adsorbates only, since we intend to examine 
experiments on one-component adsorbates, and much of the algebra gets 
out of hand with many components. 

If  we take the limit P2 -+ 0 and then R2 ~ o% Eqs. (15) reduce to 

-~�89 - [T~ + V/(1 -- ~7)1A~1 + (1 + �89 -- r/) z = 0 (19) 

and 

I 1 + - - L~z LT12 + 2(1 -- r/) - - -J  = (1 7/) 2 (20) 

where 

=-~Trp~R~ 3, L~2 = lim R~2;~2/R~, T~2 = lira ~'~2R~/R~2 (21) 

The monolayer adsorption isotherm is then given by 

ml = (plRdl2)Llz  (22) 

The parameter T12 is defined from Eq. (7). We obtain 

Rz 1 ~b(x)]-  1 ) d x )  - t  (23) T~2 -- i~ (fo= {exp[-~--f 
The integral in Eq. (23) is simply the Henry's law coefficient <20~ for an ad- 
sorption potential ~b(x) onto a plane surface. Using Eq. (20), the monolayer 
adsorption isotherm becomes 

p1R1 1 + 2~7 - ~7(1 - -q),~l~ (24) 
m = 12(1 - r/) z 7'i2 + [-q/2(1 - -q)] - A~r//12 

The calculation of the surface excess by taking limits of Eq. (17) is a little 
more complicated. The calculation goes through in exactly the same way as 
when A~ = 0 (the case described in our earlier paper (a>) and so we do not 
repeat the details. A fairly tedious piece of  algebra gives 

1 ( �89 - 3/(1 - ~q) ) ( 2 5 )  
nl = -6 p~R~ 3 + 1 + ~7{[(4 - r/)/(1 - .q)2] _ [A/(1 -- ~1)]} ? 
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Equations (24) and (25) provide us with adsorption isotherms for the ad- 
sorbed monolayer density and the surface excess. In our discussion of experi- 
mental adsorption isotherms we use these expressions. 

4. S U R F A C E  T R A N S I T I O N S  AT V E R Y  LOW BULK 
D E N S I T Y  

In experimental studies of the adsorption of noble gases onto graphite, 
adsorption isotherms rather like those sketched in Fig. 1 are seen, (16-18) and 
recent Monte Carlo simulation studies (19) of the adsorption of krypton onto 
graphite show similar isotherms. The feature of these isotherms that we wish 
to discuss is that as the bulk density (or pressure) increases at fixed tempera- 
ture, the isotherm goes through a sudden, rapid increase, which is identified 
as a surface condensation transition at the lower temperatures. Above a 
"critical" temperature, the increase is of finite gradient but is still very steep. 
In this section we calculate the bulk density for the transition as a function of 
temperature and compare this with the experimental bulk density at which the 
surface is 40~o covered (the critical surface density identified by Thomy and 
Duval(18)). 

The horizontal axis in Fig. 1 shows these transitions occurring at bulk 
pressures of 10 -a Torr, low enough to use the ideal gas law to determine the 
bulk density from the bulk pressure. The density at which the transitions 
occur is ~ ~ 10-8-10 -7. (We discuss the choice of hard-sphere diameter for 

. . . . .  i ~ t , l ,  

Fig. 1. Sketch of adsorption isotherms of krypton on graphitizcd carbon expressed as 
a fraction of monolaycr coverage by krypton at 77.3 K. (1) 82.4 K;  (2) 84.t K;  (3) 85.7 K ;  
(4) 87.1 K; (5) 88.3 K; (6) 90.1 K. 



Adsorption Isotherms for Fluids 55 

the gas particles below.) At such small values of-q we may expand the surface 
excess in powers of ~/to find 

nl = (plR1/12)LI2[1 + 0(*7)] = m[1 + O(~/)] (26) 

so that in this section we consider the simpler monolayer density of Eq. (24) 
as a measure of the amount adsorbed. 

If  we examine Eq. (24), we see that it may have a simple pole at a finite 
positive density, because the denominator becomes zero. On the high-density 
side the monolayer density is negative, which is physical nonsense. However, 
on the low-density side the monolayer density increases until it diverges at 
same value ~(T). We identify this divergence as the limit of metastability of 
the low-density surface phase. The sticky gas model in the Percus-Yevick 
approximation cannot connect the bulk liquid and bulk gas phases in a two- 
phase region: The answers come out in complex numbers. In the same way 
it cannot connect the dense surface phase with the dilute bulk and surface 
phases--a range of negative surface densities results. It can, however, connect 
the dilute bulk and surface phases and thus predict the condensation. We 
note that the denominator of Eq. (24) is still negative when the bulk system 
undergoes a transition to a liquid state, but the numerator changes sign on 
the liquid side of the spinodal curve, so that for the liquid state the adsorbed 
monolayer density is positive. At temperatures above the critical temperature 
of the bulk, these problems do not arise in the same way. 

If  we insert the solution of Eq. (19) into (24) we see that the divergence 
occurs when ~ is the solution of 

2T1= - r,~ = -{[%,  + ~7/(1 - 7)12 - �89 + 7/2)/(1 - r))2} 1'2 (27) 

From Eq. (7) we see that r , ,  is a measure of the strength of the adsorbate- 
adsorbate attractions. For weak enough attractions (r , ,  < 2T1=) there is no 
condensation. To evaluate r l ,  we use a Lennard-Jones potential 

411"(r) = 4~[(rr/r) 1= - 0r/r) 6] (28) 

The hard-sphere diameter is taken to be rr. To evaluate T12 via Eq. (23) for 
gas particles interacting with a graphite surface, we use the potential intro- 
duced by Steele (2~ and used in Monte Carlo simulations of adsorption 
processes by Lane and Spurling. (.9~ The potential for a gas cc is 

_ c ) r  \ 
3 A x ( x  + 0.61 Ax)aJ (29) 
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Table I. Lennard-Jones Parameters 
Used in the Calculations 

~/k, K ~, nm 

Krypton c26) 168.8 0.367 
Xenon c27) 221.0 0.4100 
Methane C27~ 148.2 0.3817 
Carbon cag) 27.0 0.345 

In Eq. (29) the parameters e(% C) and E(~, C) are those for the ~ molecule- 
carbon atom Lennard-Jones potential determined from the Lorentz- 
Berthelot combining rules: 

~(~, C) = �89 ~) + ~(C, C)], ,(~, C) = [,(~, ~)~(C, C)I 1'~ 

where a(~, ~) and E(~, a) are the parameters of Eq. (28) for the ~-~ inter- 
action and or(C, C) and E(C, C) are those for carbon atoms in graphite. The 
other symbols in Eq. (29) are: q, the number of carbon atoms per unit area 
in the basal plane of graphite (taken as 38.18 atom nm -2) and Ax, the inter- 
layer spacing in graphite (taken as 0.34 nm). We give a list of the Lennard- 
Jones potential parameters used in this paper in Table I. 

In Fig. 2 we plot v(T) as a function of absolute temperature for krypton 
and plot the experimental data of Thorny and Duval (16) and the three 
simulation points of Lane and Spurling. c~9) The agreement between theory and 
experiment is good, but the data are at consistently lower densities than the 
theory. Two possible causes of this discrepancy are inaccurate pair potentials 
and the fact that a real condensation will always take place at lower density 
than its metastable limit. We note that we have plotted points beyond the 

Fig. 2. ( 

4 . 0  �9 �9 

~.0 A~. 

) Plot of v(T) from Eq. (27) for krypton. (A) Data of Thorny and Dural  c16~ 
for 4070 coverage. (0 )  Simulation data of Lane and Spurling. c1~) 
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"critical temperature" for the transition found by Thomy and Duval and 
others. (16-18) The third point of the simulation data (19) also corresponds to a 
transition (jump in the adsorption isotherm) above the observed critical 
point. Certainly this is a region where the isotherm is increasing very rapidly 
and this is reflected in the divergence of m~ at ~7 = ~7(T). 

I f  we note that r/(T) is very small, we can construct an approximate law 
of corresponding states for the transition from an approximate solution of 
Eq. (27). We define the reduced temperature T* for some fluid as 

T* = k r / ,  ( 3 0 )  

where E is the Lennard-Jones potential energy parameter for the fluid, and 
t]he reduced second virial coefficient by 

B'(T*) = : & ( , r * / k ) / 2 , ~ R ~  ~ (31) 

where R1 is the Lennard-Jones potential distance parameter for the fluid 
and 

B2(T)= 4~r~o~r2(exp( 4e 

so that 

~0 ~176 
B ' ( T * )  = 2 x 2 { e x p [ - ( 4 / T * ) ( x  -12 - x-6)] - 1} d x  (33) 

Fig. 3. (. 

o.3 

0.2 

0.1 

~T ~} 

~ ~ I I �9 0 
| �9 

x 
x 

~ ' S  0 ' 7  0 - 5 s  ~'6 

) Plot of/~(T*) from Eq. (34). Data  of Thorny and Duva! for krypton (j~), 
xenon (111), and methane (O). Data of Larher for krypton ( • ). 
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An approximate solution of (27) is then 

iz(T*) - 271(~T*/k)K(ET*/k)/R = [3B'(T*) - 11-1 (34) 

which provides us with an approximate ":universal curve" or "law of corre- 
sponding states" for the bulk adsorbate density at which the transition 
occurs. In Fig. 3 we plot/~(T*) from Eq. (34) and some experimental data. 
The agreement is fair, but not so good for xenon and methane as for krypton. 
This may be because the potential parameters for krypton are more recent 
estimates ~2~ than those for methane and xenon327~ The data for xenon and 
methane are those for a best fit of  a second virial coefficient for a Lennard- 
Jones potential to experimental results. Since we use them in evaluating the 
Henry's law constant K ( T ) ,  we cannot expect them to fi3 reality as well as 
parameters chosen for best fit for a wider range of experimental data, as was 
the case for krypton326~ 

5. M A X I M A  IN A D S O R P T I O N  I S O T H E R M S  FOR D E N S E  
FLUIDS  

Figure 4 is a sketch of the data of  Ozawa et al. (21) for the adsorption of 
methane onto molecular sieving carbon. Recent studies have shown that at 
low pressures, adsorption isotherms for gases onto carbon do not vary greatly 
from one form of carbon to another <~) and we assume that this is still true 
for dense adsorbates. That  is, we assume that the surface is a graphite surface 
and the adsorption potential is of the form given in Eq. (29), using the param- 
eters from Table I. The resulting adsorption isotherms are shown in Figure 
5. They show good qualitative agreement with experiment. Unfortunately the 

ea 

, 

Fig. 4. Sketch of adsorption isotherms at high pressure for methane on millipore carbon 
sieves.C 21~ 
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Fig. 5. Plot of surface excess nl in number 
adsorbed/nm ~, from Eq. (25) for methane on 
graphite. 

nl 2' 

IO 

E 

S 

O.oS o, i  

data of Ozawa e t  al.  (21) for the simple adsorption isotherm are not very accur- 
ately presented and so it is difficult to carry out a more detailed comparison. 
The maximum at ~ 14 atoms adsorbed per nm e at T = 25~ corresponds to 
2-3 close-packed monolayers on the surface. 

Some very recent results of Specovius and Findenegg (29) on adsorption 
isotherms for argon on graphitized carbon also show a maximum. The maxi- 
mum has been observed at k T / ~  ~ 2.21 and appears to shift to higher bulk 
densities and to widen as the temperature increases. 

As noted in the introduction, the maxima in the adsorption isotherms 
occur because of the hard repulsions at close range between adsorbate 
particles. The qualitative agreement of our results suggest that our theory 
works well in accounting for repulsive interactions between adsorbate 
particles at high bulk adsorbate densities. We note that there is no pole in 
these adsorption isotherms because, as discussed above, the temperature is 
too high. 

6. D I S C U S S I O N  

The agreement between our theory and experimental results for both 
low- and high-density fluid adsorbates suggests that our assumption of  the 
importance of  strong repulsive interactions in adsorption is essentially 
correct. A virtue of the theory is that it treats the adsorbing region as part of a 
bulk inhomogeneous system. There is no need to treat the equilibrium 
between the bulk adsorbate and the vicinity of the adsorbed phase as an 
equilibrium between separate regions or phases by thermodynamics, since 
the results come naturally from statistical mechanics. Unfortunately the 
description of the adsorbed material is fairly primitive. It was necessary to 
assume that the surface was structureless and the theory did not lead to a 
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descr ip t ion  o f  the  two-par t ic le  cor re la t ion  funct ions in the  adso rbed  layer  

region.  
A p rope r  conf i rmat ion  o f  our  adso rp t ion  mode l  would  require  measure-  

ments  o f  adso rba t e  s t ructure  in dense adsorba tes  close to the  adsorb ing  

surface. Techniques  for  such measurements  do  no t  a p p e a r  to be  avai lable  at  
present .  O the r  app l ica t ions  o f  our  theory  do  exist, however .  A d s o r p t i o n  
i so therms  for  dense fluid mixtures  p lo t t ed  as a funct ion  o f  concen t ra t ion  
show bo th  m a x i m a  a n d  min ima .  ~22~ W e  are  extending  our  analysis  o f  adsorp -  
t ion  i so therms for  dense fluids to  the  case o f  b ina ry  and  t e rnary  mixtures  a t  

present .  
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